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Executive summary

Numerical effects are elicited when children and adults compare numerical magnitudes. They are behavioral “signatures”
of the brain networks responsible for magnitude processing.

The intraparietal sulcus (IPS) is a key structure in the child’s brain dedicated to processing numerical magnitudes. However,
in younger children, other brain structures associated with memory, attention, and finger representation can help the IPS
to deal with numerical information.

For grasping the number concept, it is necessary to manipulate numerical quantities. This capacity is closely involved with
learning mathematics. In fact, magnitude processing is an important skill associated with mathematical competence
throughout life.

Educators should present children with new mathematical challenges for “capitalizing on the sense of number” whenever
possible. A curriculum based on this principle could strengthen the learning of mathematics in younger and older students.

Introduction

Magnitude is a core dimension of the semantics of number. From birth, we are continually comparing the numerical
magnitudes of things in our life. Which one of two boxes has more chocolates? Is the place where I work more distant from
my house than the park where I jog? Did I receive the correct amount of change in the market? There are innumerable
examples. Numerical magnitude refers to a cardinal aspect of numbers, that is, when they denote the “numerosity” of a set
(e.g., Butterworth, 1999). To grasp the magnitude concept, we need to learn the distinction between the transformations that
do or do not modify the cardinality of a set (e.g., adding or removing objects in a set modify the cardinal; spreading or
grouping the objects do not). We also need to be able to compare the numerosity of different sets (e.g., set A could be
smaller, larger, or equal to set B). We first learn these principles through our experience with sets of real objects. Later on, we
learn with symbols, such as Arabic numbers or words. The nature of magnitude representations in typical and atypical
development have been commonly explored with magnitude comparison tasks using nonsymbolic (dots) or symbolic (digits)
stimuli.

How the numerical magnitudes are processes: The tip of the iceberg

Numerical effects are elicited when children and adults compare numerical magnitudes. They are behavioral “signatures” of the brain
networks responsible for magnitude processing.

When children and adults compare two numerical magnitudes, some effects are elicited in a typical manner. Interestingly,
these effects are observable, robust, and constitute “signatures” of the status of the brain networks that specialize in
numerical information. Using the iceberg metaphor, these are like “the tip of the iceberg,” whereas the neural networks
responsible for these effects are like “the submerged part.” In this sense, we can obtain information directly and easily using
the tip part, and indirectly using the part under the sea. These numerical effects have been replicated in many different
languages, cultures, and numerical notations.

One of the most studied numerical effects is the numerical distance effect (see Figure 1). In simple words, the time needed to
determine which is the larger (or smaller) quantity decreases with increasing numerical distance between two numerical
quantities (e.g., people are faster at 2 versus 9 than 2 versus 3). Additionally, for an equal numerical distance, the time needed
to compare quantities increases with the size of the quantities (e.g., people are faster at 2 versus 3 than 7 versus 8). This is
called the numerical size effect and has also been reported many times in adults and children. On the other hand, the semantic
congruity effect is also elicited when people make any type of magnitude comparison (e.g., “Which is smaller?”). That is, small
values are more rapidly compared when participants are asked, “Which is smaller?,” whereas large values are more rapidly
compared when they are asked, “Which is larger?” In other words, people are faster to compare two numerical values when
their overall magnitude is congruent with the semantics of the verbal phrasing of the question.

What happens in the child’s brain when numerical magnitudes are processed?

The intraparietal sulcus (IPS) is a key structure of the child´s brain dedicated to processing numerical magnitudes. However, in younger



children, other brain structures associated with memory, attention, and finger representation can help the IPS deal with numerical
information.

There is now extensive evidence that a brain structure that runs horizontally at the middle of the parietal lobes, named the
intraparietal sulcus, is very responsible for representing numerical magnitude (see Figure 2). Interestingly, in the child’s brain,
the activations generated when comparing numbers in Arabic format are situated in the core of the IPS while neural
activations for comparing sets of dots are found very near to the IPS, but extending to neighboring structures which are
related to the representation of fingers. So, this pattern of brain activations elicited by dots may reflect a link between fingers
and nonsymbolic numerical processing. Actually, it has been reported that nonsymbolic numerical stimuli are more likely to
elicit finger-based solution strategies than symbolic ones (Kaufmann et al., 2008; Butterworth, 2005; Gracia-Bafalluy and
Noël, 2008).

On the other hand, there is evidence demonstrating the existence of age-related shifts in brain functional activity from frontal
(anterior) regions to parietal (posterior) regions in response to number magnitude processing. In contrast to an adult’s brain,
the child’s brain relies much more on frontal brain regions when numerical magnitudes are processed (Ansari and Dhital,
2006; Cantlon et al. 2006; Kaufmann et al., 2008; Rivera et al., 2005). The differences between children and adults probably
reflect children’s greater enrollment of areas involved in attention and working memory (frontal regions) for successfully
processing numerical magnitudes. Such areas are presumably activated to compensate for “immature” representations of
numbers in the IPS. Progressively, children improve their knowledge about numerical magnitude, and they need to rely less on
these supplementary processes. Unfortunately, to date, developmental studies have focused on comparing children with
adults. However, in the future, a more precise picture of the neural bases of the numerical development will be obtained from
studies contrasting children of different ages.

Numerical magnitude processing and math competence

For grasping the number concept, it is necessary to manipulate numerical quantities. This capacity is closely involved with learning
mathematics. In fact, magnitude processing is an important skill associated with mathematical competence throughout life.

Children’s performance when they are asked to compare two digits is strongly associated with concurrent (Holloway and
Ansari, 2009; Sasanguie et al., 2012; Reigosa-Crespo et al., 2012) and prospective maths competence (De Smedt et al., 2009;
Sasanguie et al., 2013). This association has been systematically reported in younger and older children. However, research
has provided mixed evidence concerning the relationship between performance on nonsymbolic comparison tasks and
mathematical competence. Many researchers argue that these divergent findings could stem from the diversity of the tasks
used (e.g., sometimes nonnumerical parameters such as density of the arrays, the areas of individual dots, their luminance,
etc., are controlled, but sometimes not).

Surprisingly, the association between magnitude processing and mathematical competence is stable over the lifespan
(Schneider et al., 2016). Alternatively, it might be that this association is mainly driven by an effect of numerical magnitude
processing on early mathematical development, which then cascades into future math development throughout life. Or, as
the second hypothesis, there might also be a causal influence in the opposite direction, so that gains in mathematical
achievement cause improvements in magnitude comparison skills.

Implications for teaching maths

Educators should present children with new mathematical challenges for “capitalizing on the sense of number” whenever possible. A
curriculum based on this principle could help strengthen the learning of mathematics in younger and older students.

Nowadays, there is robust evidence that specific brain networks we possess from birth are responsible for the capacity to
manipulate numerical magnitudes. These findings could be a “usable knowledge” derived from neuroscience research with
some implications for teaching mathematics. In this sense, educational neuroscientists strongly recommend, as a first step for
teaching math in any grade, that teachers should “capitalize on this intuition” instead of immediately introducing abstract
knowledge. Additionally, in educational settings, it is crucial to build the foundational number concepts first for strengthening
the meaningfulness of numbers, especially the links between math facts and their component meanings.

Numerous attempts have been made to design educational interventions to foster the development of numerical magnitude
processing. In the majority, the results have shown improvement in magnitude processing using nonsymbolic (Booth & Siegler,



2008; Hyde, Khanum & Spelke, 2014) and symbolic quantities (Obersteiner, Reiss & Ufer, 2013; Ramani & Siegler, 2011) with
transfer to improvements in math competence. 

The “numerical hour” in most kindergarten curricula comprises a wide variety of numerical activities, including number
recognition, counting, comparing sets, playing board games, etc. These have been shown to have significant effects on
children’s understanding of numbers and tests of early numeracy when they enter formal schooling. From these interventions,
however, it is not possible to focus on stimulating numerical magnitude processing.

So, more relevant learning tasks could be those focused on very specific aspects of numerical magnitude processing which
take into account the relevance of attentional and memory processes and the use of fingers in younger children. These kinds
of tasks have been presented in game-like formats using both symbolic and nonsymbolic stimuli, and have been shown to
have positive effects on children’s numerical magnitude processing. Some examples of activities that foster numerical
magnitude processing are Number Board Games (Siegler, 2009), Number Race Game (Wilson et al., 2006), Rescue Calcularis
(Kucian et al., 2011), and The Estimator (Vilette et al., 2010).

Finally, it is worth noting that most of these tasks have been used in kindergartners or with children from low-income
backgrounds at risk of arithmetic problems who are especially impressionable by these interventions. Yet surprisingly, there is
not an emphasis on numerical magnitude problems in the maths curriculum for older children. This omission produces
deleterious consequences in learning maths. For example, fractions are often taught using the idea that fractions represent a
part of a whole. This interpretation is important, but it fails to convey the essential information that fractions are numbers
with magnitudes. One effective way to ensure that students understand this is to use number lines during instruction because
they illustrate that each fraction corresponds to a given magnitude.

Key points for maths curriculum

Focus on “number intuition” when new mathematical knowledge is presented, whenever possible.

Focus on specific aspects of numerical magnitude processing (e.g., comparison tasks using varying levels of numerical
distance and tasks for cementing links between nonverbal quantity representation and other developing symbolic
representations of numbers, such as Arabic numerals or number words).

Design numerical tasks using game-like formats. Take advantage of Information and Communication Technologies (ICT)
tools.

Include numerical magnitude problems for older children.

Glossary

Brain anterior regions – Here is mainly referred to as the frontal lobe. Located at the front of the brain, this is one of the four
major lobes of the cerebral cortex in the mammalian brain. The frontal lobe is located at the front of each cerebral
hemisphere and positioned in front of the parietal lobe and above and in front of the temporal lobe.

Brain posterior regions – Here is mainly referred to as the parietal lobe. This is one of the four major lobes of the cerebral
cortex in the brain of mammals. The parietal lobe is positioned above the occipital lobe and behind the frontal lobe.

Cardinality – A property of sets indicating the number of elements in the set.

Finger-based strategies – Finger counting provides multisensory input, which conveys both cardinal and ordinal aspects of
numbers. Recent data indicate that children with good finger-based numerical representations show better arithmetic skills
and that training finger gnosis, or “finger sense,” enhances mathematical skills.

Nonnumerical quantities – Variables such as luminance and physical size or angles and lines offer nonnumerical quantity
information by visual inspection of the stimuli. Based on this information we can judge the amount of nonnumerical stimuli
(e.g., choosing the larger in size of “bikini” and “coat”).
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